Let {mathbb {K}} be a non-trivially valued non-Archimedean complete field. Let ell _{infty }({mathbb {N}}, {mathbb {K}}) [ell _c({mathbb {N}}, {mathbb {K}});c_0({mathbb {N}}, {mathbb {K}})] be the space of all sequences in {mathbb {K}} that are bounded [relatively compact; convergent to 0] with the topology of pointwise convergence (i.e. with the topology induced from {mathbb {K}}^{{mathbb {N}}}). Let X be an infinite ultraregular space and let C_p(X,{mathbb {K}}) be the space of all continuous functions from X to {mathbb {K}} endowed with the topology of pointwise convergence. It is easy to see that C_p(X,{mathbb {K}}) is metrizable if and only if X is countable. We show that for any X [with an infinite compact subset] the space C_p(X,{mathbb {K}}) has an infinite-dimensional [closed] metrizable subspace isomorphic to c_0({mathbb {N}}, {mathbb {K}}). Next we prove that C_p(X,{mathbb {K}}) has a quotient isomorphic to c_0({mathbb {N}}, {mathbb {K}}) if and only if it has a complemented subspace isomorphic to c_0({mathbb {N}}, {mathbb {K}}). It follows that for any extremally disconnected compact space X the space C_p(X,{mathbb {K}}) has no quotient isomorphic to the space c_0({mathbb {N}}, {mathbb {K}}); in particular, for any infinite discrete space D the space C_p(beta D, {mathbb {K}}) has no quotient isomorphic c_0({mathbb {N}}, {mathbb {K}}). Finally we investigate the question for which X the space C_p(X,{mathbb {K}}) has an infinite-dimensional metrizable quotient. We show that for any infinite discrete space D the space C_p(beta D, {mathbb {K}}) has an infinite-dimensional metrizable quotient isomorphic to some subspace ell _c^0({mathbb {N}}, {mathbb {K}}) of {mathbb {K}}^{{mathbb {N}}}. If {mathbb {K}} is locally compact then ell _c^0({mathbb {N}}, {mathbb {K}})=ell _{infty }({mathbb {N}}, {mathbb {K}}). If |n1_{{mathbb {K}}}|ne 1 for some nin {mathbb {N}}, then ell _c^0({mathbb {N}}, {mathbb {K}})=ell _c ({mathbb {N}}, {mathbb {K}}). In particular, C_p(beta D, {mathbb {Q}}_q) has a quotient isomorphic to ell _{infty }({mathbb {N}}, {mathbb {Q}}_q) and C_p(beta D, {mathbb {C}}_q) has a quotient isomorphic to ell _c({mathbb {N}}, {mathbb {C}}_q) for any prime number q.