Solution precursor plasma spray (SPPS) can prepare thermal barrier coatings (TBCs) with nanostructures, which can modify the adhesion and wettability of molten silicate environmental deposits (CMAS) on the surface of TBCs, thereby improving the resistance of TBCs to CMAS corrosion. In this study, SPPS layers with micro-nano double scale structures were prepared on the surface of conventional atmospheric plasma spraying (APS) coatings. The effect of process parameters on the micro-nano double scale structures and the wetting and infiltration behavior of molten CMAS on the surface of coatings were investigated. The results show that micron structure is more sensitive to process parameters. Lower precursor viscosity, closer spraying distance, and smoother APS layer are favorable to form more typical and dense micron structures. After covering the SPPS layer, the CMAS wetting diameter is reduced by about 40% and the steady-state contact angle increased up to three times. The reason is that the micro-nano double scale structures can effectively trap air and form an air layer between the coating surface and the molten CMAS. In addition, nano-particles play a more important role in the formation of the air layer, which in turn determines the steady-state wettability properties. While micron structures can influence the time needed to reach the steady state. However, the SPPS layers composed of nano-particles have a very loose structure and weak cohesion, and they degrade and fail rapidly after the infiltration of molten CMAS. Therefore, maintaining the excellent CMAS wetting resistance of the SPPS layers while taking into account their lifetime and reliability has become the focus of further research.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access