Accurate diagnosis and effective antiviral strategies are critical to combat acute infection and to avoid damage to the host. Due to their restricted radiation range and energy, Auger electron emitters have shown potential as a RNA-destructing radionuclide therapy in oncology and infection. Focusing on the process of angiotensin-converting enzyme 2 (ACE2)-mediated endocytosis, Technetium-99m-labeled DX600 (99mTc-DX600) was synthesized as an Auger electron vector to specifically bind to surface-expressed ACE2 proteins on 293T-hACE2 cells (293T cells stably expressing human ACE2), and Technetium-99m-loaded microvesicles (99mTc-MVs) served as an antiviral tracer and effector in pseudovirus infection. The whole-body ACE2 expression evaluation was non-invasive, meanwhile, the enhanced green fluorescent protein expression of pseudoviruses was substantially inhibited as a result of the 99mTc-DX600 loading of microvesicles, though the mitochondrial and DNA stabilities of the host cells were not affected. Furthermore, the in vivo distribution of 99mTc-DX600 in humanized ACE2 mice was demonstrated to be both ACE2-specific and long-lasting, and an antiviral effect was fully exhibited with two cycles of intravenous injection at a dosage of 37 MBq. Taking advantage of the ACE2-mediated interaction and natural trigger mechanism of virus-induced endocytosis, 99mTc-MV represents a theranostic biosensor of Auger electrons that can expose viral RNA to lethal amounts of radiation, with the host cells receiving no detrimental radiation.
Read full abstract