Fetal cleft lip is a common congenital defect. Considering the delicacy and difficulty of observing fetal lips, we have utilized deep learning technology to develop a new model aimed at quickly and accurately assessing the development of fetal lips during prenatal examinations. This model can detect ultrasound images of the fetal lips and classify them, aiming to provide a more objective prediction for the development of fetal lips. This study included 632 pregnant women in their mid-pregnancy stage, who underwent ultrasound examinations of the fetal lips, collecting both normal and abnormal fetal lip ultrasound images. To improve the accuracy of the detection and classification of fetal lips, we proposed and validated the Yolov5-ECA model. The experimental results show that, compared with the currently popular 10 models, our model achieved the best results in the detection and classification of fetal lips. In terms of the detection of fetal lips, the mean average precision (mAP) at 0.5 and mAP at 0.5:0.95 were 0.920 and 0.630, respectively. In the classification of fetal lip ultrasound images, the accuracy reached 0.925. The deep learning algorithm has accuracy consistent with manual evaluation in the detection and classification process of fetal lips. This automated recognition technology can provide a powerful tool for inexperienced young doctors, helping them to accurately conduct examinations and diagnoses of fetal lips.