Background and purposeHPV-positive HNSCC cells are characterized by radiosensitivity, inefficient DNA double-strand break repair and a profound and prolonged arrest in G2. Here we explored the effect of clinically relevant inhibitors of Chk1 and Wee1 to inhibit the radiation-induced G2-arrest in order to achieve further radiosensitization. Material and methodsAssessment of Chk1 activity by Western blot; assessment of cell cycle distribution by propidium iodide staining and flow cytometry; assessment of cell survival by colony formation assay. HPV+ HNSCC cell lines: UD-SCC-2, UM-SCC-47 and UPCI-SCC-154; Chk1 inhibitors: LY2603618, MK8776; Wee1 inhibitor: AZD1775. ResultsSpecific Chk1 inhibitors efficiently abrogated the radiation-induced G2-arrest and caused radiosensitization. Wee-inhibition by AZD1775 resulted in the activation of Chk1. This feedback mechanism is likely to counteract some of the effects of Wee1 inhibition but could be antagonized through the combined inhibition of both kinases. Combined inhibition was effective using profoundly reduced concentrations of both inhibitors and resulted in more efficient radiosensitization of the HPV-positive cell lines compared to p53 proficient normal human fibroblasts. ConclusionsSpecific Chk1 inhibitors as well as the combined inhibition of Chk1 and Wee1 radiosensitize HPV-positive HNSCC cells.