Large industrial emissions of volatile organic compounds (VOCs) from the petrochemical industry are a critical concern due to their potential carcinogenicity. VOC emissions vary in composition depending on the source and occur in mixtures containing compounds with varying degrees of toxicity. We proposed the use of carcinogenic equivalence (CEQ) and multivariate analysis to identify the major contributors to the carcinogenicity of VOC emissions. This method weights the carcinogenicity of each VOC by using a ratio of its cancer slope factor to that of benzene, providing a carcinogenic equivalence factor (CEF) for each VOC. We strategically selected a petrochemical industrial park in southern Taiwan that embodies the industry's comprehensive nature and serves as a representative example. The CEQs of different emission sources in three years were analyzed and assessed using principal component analysis (PCA) to characterize the major contributing sectors, vendors, sources, and species for the carcinogenicity of VOC emissions. Results showed that while the study site exhibited a 20.7 % (259.8 t) decrease in total VOC emissions in three years, the total CEQ emission only decreased by 4.5 % (15.9 t), highlighting a potential shift in the emitted VOC composition towards more carcinogenic compounds. By calculating CEQ followed by PCA, the important carcinogenic VOC emission sources and key compounds were identified. More importantly, the study compared three approaches: CEQ followed by PCA, PCA followed by CEQ, and PCA only. While the latter two methods prioritized sources based on emission quantities, potentially overlooking less abundant but highly carcinogenic compounds, the CEQ-first approach effectively identified vendors and sources with the most concerning cancer risks. This distinction underscores the importance of selecting the appropriate analysis method based on the desired focus. Our study highlighted how prioritizing CEQ within the analysis framework empowered the development of precise control measures that address the most carcinogenic VOC sources.