Lead (Pb) is the most common contaminant of heavy metals and is widely present in the environment. Destruction of bone structure, malformation of bone development, and loss of bone mass are important pathological features of lead-exposed individuals. However, the exact molecular mechanisms associated with lead exposure and osteogenic injury are still not fully understood. MC3T3-E1 mouse embryonic osteoblast is a cell line widely used in osteoblast cytology. It can differentiate into mature osteoblasts and express bone-specific genes in cell culture. The doses of 1, 2, and 4 mM Pb were adopted to study the toxicity of Pb on MC3T3-E1 proliferation and differentiation. In this study, the results show that Pb increases the expression of apoptosis-related proteins, including PARP1, cleaved caspase-3, Bax, and cleaved caspase-9. More importantly, Pb activated endoplasmic reticulum stress and oxidative stress, as evident by elevated PERK/ATF4/CHOP and ROS/NRF2 signaling pathway. Pb induced ROS production in MC3T3-E1 cells through endoplasmic reticulum stress and produced a lethal effect. NAC mitigated these effects. Endoplasmic reticulum stress inhibitor 4-PBA can block the ER stress pathway, reduce ROS production, and enhance cell viability. In addition, studies have shown that ERO1 activation in the ER stress pathway is responsible for inducing ROS production. ROS produced by the mitochondrial pathway also aggravates ER stress. This study suggests that Pb induces MC3T3-E1 cell apoptosis by inducing PERK-mediated ER stress and NRF2-mediated oxidative stress via mutual enhancement, which may be an important mechanism leading to skeletal toxicity.
Read full abstract