This study investigates the impact of building insulation standards on indoor thermal environments and the risk of heat-related illnesses during heatwaves in South Korea. Indoor temperatures were measured in residential buildings located in Chuncheon and Gwangju during the 2022 heatwave, with outdoor temperature data sourced from the Korea Meteorological Administration. Probability distribution fitting was used to estimate the likelihood of indoor temperatures exceeding the critical threshold of 27 °C. Additionally, a linear regression analysis was conducted to examine the relationship between the probability of exceeding the threshold and heat-related illness data from 2017 to 2023 provided by the Korea Disease Control and Prevention Agency. The findings reveal significant variations in indoor thermal conditions during heatwaves, influenced by factors such as building type, year of construction, and climate region, which affect the thermal insulation performance. Buildings with a lower thermal insulation performance were associated with higher indoor temperatures, increasing the likelihood of exceeding the critical threshold and contributing to a higher incidence of heat-related illnesses, particularly in provincial non-metropolitan areas. These results underscore the need for region-specific building insulation standards that address both winter energy efficiency and summer heatwave resilience. Enhancing thermal insulation in vulnerable regions could significantly reduce the risk of heat-related illnesses and improve public health resilience to extreme heat events.
Read full abstract