Despite the global transition towards cleaner energy sources observed over the last decade, disparities in access persist worldwide. The dependence on biomass for household heating exacerbates fuel poverty, as economically vulnerable households face challenges in obtaining certified firewood and often resort to using contaminated biomass as a substitute, either partially or completely. We examined black carbon (BC) particle concentrations —a marker for combustion— during wood stove operation through a five-day case study in a typical Chilean household. BC increased rapidly following the ignition of the stove, with the combustion of dry Eucalyptus globulus logs yielding a substantially lower peak (5.29 μg/m3) than when using unclean biomass: 35.75 μg/m3 with demolition wood and painted furniture, and 87.11 μg/m3 with the addition of a blend of particleboard with polystyrene foam. During the latter two events, BC particles remained indoors for about 20 h before the concentrations reverted to pre-spike levels. The slow decay in BC concentrations was further influenced by the infiltration of outdoor air. The mean indoor BC concentrations were comparable to or even exceeded those observed on busy roads in major cities worldwide. These results highlight the risks associated with limited access to clean fuels for indoor heating, alongside inadequate insulation. This study sheds light on the problem of fuel poverty and its adverse effects on health and well-being.
Read full abstract