Recently, the augmented complex-valued normalized subband adaptive filtering (ACNSAF) algorithm has been proposed to process colored non-circular signals. However, its performance will deteriorate severely under impulsive noise interference. To overcome this issue, a robust augmented complex-valued normalized M-estimate subband adaptive filtering (ACNMSAF) algorithm is proposed, which is obtained by modifying the subband constraints of the ACNSAF algorithm using the complex-valued modified Huber (MH) function and is derived based on CR calculus and Lagrange multipliers. In order to improve both the convergence speed and steady-state accuracy of the fixed step size ACNMSAF algorithm, a variable step size (VSS) strategy based on the minimum mean squared deviation (MSD) criterion is devised, which allocates individual adaptive step size to each subband, fully exploiting the structural advantages of SAF and significantly improving the convergence performance of the ACNMSAF algorithm as well as its tracking capability in non-stationary environment. Then, the stability, transient and steady-state MSD performance of the ACNMSAF algorithm in the presence of colored non-circular inputs and impulsive noise are analyzed, and the stability conditions, transient and steady-state MSD formulas are also derived. Computer simulations in impulsive noise environments verify the accuracy of theoretical analysis results and the effectiveness of the proposed algorithms compared to other existing complex-valued adaptive algorithms.