A comparison between four Genetic Programming techniques is presented in this paper. The compared methods are Multi-Expression Programming, Gene Expression Programming, Grammatical Evolution, and Linear Genetic Programming. The comparison includes all aspects of the considered evolutionary algorithms: individual representation, fitness assignment, genetic operators, and evolutionary scheme. Several numerical experiments using five benchmarking problems are carried out. Two test problems are taken from PROBEN1 and contain real-world data. The results reveal that Multi-Expression Programming has the best overall behavior for the considered test problems, closely followed by Linear Genetic Programming.
Read full abstract