Atypical visual processing has been reported in developmental conditions like autism and dyslexia, and some accounts propose a causal role for visual processing in the development of these conditions. However, few studies make direct comparisons between conditions, or use sufficiently sensitive methods, meaning that it is hard to say whether atypical visual processing tells us anything specific about these conditions, or whether it reflects a more general marker of atypical development. Here I review findings from two computational modelling approaches (equivalent noise and diffusion modelling) and related electroencephalography (EEG) indices which we have applied to data from autistic, dyslexic and typically developing children to reveal how the component processes involved in visual processing and decision-making are altered in autism and dyslexia. The results identify both areas of convergence and divergence in autistic and dyslexic children's visual processing and decision-making, with implications for influential theoretical accounts such as weak central coherence, increased internal noise, and dorsal-stream vulnerability. In both sets of studies, we also see considerable variability across children in all three groups. To better understand this variability, and further understand the convergence and divergence identified between conditions, future studies would benefit from studying how the component processes reviewed here relate to transdiagnostic dimensions, which will also give insights into individual differences in visual processing and decision-making more generally.