Hydrocortisone (HC) is the preferred drug in children with congenital adrenal hyperplasia due to its lower potency as well as fewer reports of side effects. Fused deposition modelling (FDM) 3D printing holds the potential to produce low-cost personalised doses for children at the point of care. However, the compatibility of the thermal process to produce immediate-release bespoke tablets for this thermally labile active is yet to be established. This work aims to develop immediate-release HC tablets using FDM 3D printing and assess drug contents as a critical quality attribute (CQA) using a compact, low-cost near-infrared (NIR) spectroscopy as a process analytical technology (PAT). The FDM 3D printing temperature (140 °C) and drug concentration in the filament (10%-15% w/w) were critical parameters to meet the compendial criteria for drug contents and impurities. Using a compact low-cost NIR spectral device over a wavelength of 900–1700 nm, the drug contents of 3D printed tablets were assessed. Partial least squares (PLS) regression was used to develop individual calibration models to detect HC content in 3D printed tablets of lower drug contents, small caplet design, and relatively complex formula. The models demonstrated the ability to predict HC concentrations over a wide concentration range (0–15% w/w), which was confirmed by HPLC as a reference method. Ultimately, the capability of the NIR model had preceding dose verification performance on HC tablets, with linearity (R2 = 0.981) and accuracy (RMSECV = 0.46%). In the future, the integration of 3DP technology with non-destructive PAT techniques will accelerate the adoption of on-demand, individualised dosing in a clinical setting.