This study examined Listeria monocytogenes isolates from two slaughterhouses in Burdur province, southern Turkey, over four seasons for antibiotic resistance, serogroups, virulence genes, in vitro biofilm forming capacity, and genetic relatedness. Carcass (540) and environment-equipment surface (180) samples were collected from two slaughterhouses (S1, S2) for 1 year (4 samplings). Of the 89 (12.4%) positive isolates, 48 (53.9%) were from animal carcasses, and 41 (46.1%) from the environment-equipment surfaces. Autumn was the peak season for Listeria monocytogenes compared to summer and spring (P<0.05). In addition, the most common serotype between seasons was 1/2c. Except for plcA and luxS genes, all isolates (100%) harbored inlA, inlC, inlJ, hlyA, actA, iap, flaA genes. Listeria monocytogenes isolates were identified as belonging to IIc (1/2c-3c; 68.5%), IVb (4b-4d-4e; 29.2%), and IIa (1/2a-3a; 2.2%) in the screening using multiplex polymerase chain reaction-based serogrouping test. A total of 65 pulsotypes and 13 clusters with at least 80% homology were determined by using pulsed field gel electrophoresis on samples that had been digested with ApaI. Thirty-four (38.2%) of the isolates were not resistant to any of the 14 antibiotics tested. The antibiotic to which the isolates showed the most resistance was rifampicin (44.9%). Serotype 1/2c was the most resistant serotype to antibiotics. Despite having biofilm-associated genes (inlA, inlB, actA, flaA, and luxS), a minority (11%) of isolates formed weak biofilm. This study revealed seasonal changes prevalence of Listeria monocytogenes, particularly higher in autumn, posing a greater risk of meat contamination. Notably, Serotype 1/2c showed significant prevalence and antibiotic resistance. Indistinguishable isolates indicated cross-contamination, underscoring the importance of prioritized training for slaughterhouse personnel in sanitation and hygiene protocols.
Read full abstract