The paper investigates the estimation of the disorder degree of the classical static noise using three entangled qubits as quantum probes together with the tools of local quantum estimation theory. Three probing schemes namely common environment (CE), independent environments (IEs) and mixed environments (MEs) are investigated and the optimal initial state preparation of the probes taken as a partially depolarized GHZ state. The results show that: (i) the IEs probing scheme allows one to achieve better estimation precision compared to both MEs and CE schemes respectively; (ii) the higher is the initial amount of entanglement of the probes, the larger is the estimation precision, independently of the scheme considered; (iii) both small and large values of the disorder parameter are uniformly estimable at the optimal interaction time; (iv) entangled qubits probes quickly encode information about the disorder parameter than single-qubit probe; (v) there is an improvement in the estimation of the disorder parameter when entangled probes interacting either in IEs or MEs are used instead of a single probe, demonstrating that a single probe is not sufficient to optimally estimate the disorder parameter of the static noise. On the other hand, we have also investigated the relationship between the residual amount of entanglement present in the probes at the optimal interaction time and the estimation precision of the disorder parameter. We show that the higher the residual amount of entanglement at the optimal interaction time, the smaller the estimation precision.
Read full abstract