The study of fetal gut development is critical due to its substantial influence on immediate neonatal and long-term adult health. Current research largely focuses on microbiome colonization, gut immunity, and barrier function, alongside the impact of external factors on these phenomena. Limited research has been dedicated to the categorization of developing fetal gut cells. Our study aimed to enhance our understanding of fetal gut development by employing advanced machine-learning techniques on single-cell sequencing data. This dataset consisted of 62,849 samples, each characterized by 33,694 distinct gene features. Four feature ranking algorithms were utilized to sort features according to their significance, resulting in four feature lists. Then, these lists were fed into an incremental feature selection method to extract essential genes, classification rules, and build efficient classifiers. Several important genes were recognized by multiple feature ranking algorithms, such as FGG, MDK, RBP1, RBP2, IGFBP7, and SPON2. These features were key in differentiating specific developing intestinal cells, including epithelial, immune, mesenchymal, and vasculature cells of the colon, duo jejunum, and ileum cells. The classification rules showed special gene expression patterns on some intestinal cell types and the efficient classifiers can be useful tools for identifying intestinal cells.
Read full abstract