Unlike uniform soils, soft clays with sand interlayers in coastal soft clays, can affect their mechanical properties, potentially impacting underground-construction safety and stability. Consolidated undrained cyclic triaxial tests were conducted to study the dynamic properties and deformation behavior of clay, focusing on how the thickness ratio between the sand and clay layers and the cyclic-stress ratio influence the pore pressure, axial strain, shear-modulus ratio, and normalized damping ratio. The results indicate that higher thickness ratios and cyclic-stress ratios lead to a faster decay of the shear-modulus ratio, quicker increases in pore pressure, faster strain accumulation, and fewer cycles to failure. The normalized damping ratio has three different forms: decreasing, decreasing then increasing, and increasing. However, at a cyclic-stress ratio of 0.2 and thickness ratio of 0.25, the samples exhibit better dynamic characteristics. Soft clay with sand layers exhibits characteristics in line with the stability theory. At low thickness and cyclic-stress ratios, purely elastic and elastically stable phases are observed. As the thickness and cyclic-stress ratios increase, it transitions to plastic stability and incremental failure.