Abstract Hydrologic assessment of climate change impacts on complex terrains and data-sparse regions like High Mountain Asia is a major challenge. Combining hydrological models with satellite and reanalysis data for evaluating changes in hydrological variables is often the only available approach. However, uncertainties associated with the forcing dataset, coupled with model parameter uncertainties, can have significant impacts on hydrologic simulations. This work aims to understand and quantify how the uncertainty in precipitation and its interaction with the model uncertainty affect streamflow estimation in glacierized catchments. Simulations for four precipitation datasets [Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG), Climate Hazards Group Infrared Precipitation with Station (CHIRPS), ERA5-Land, and Asian Precipitation–Highly Resolved Observational Data Integration Toward Evaluation (APHRODITE)] and two glacio-hydrological models [Glacio-Hydrological Degree-Day Model (GDM) and Hydrological Model for Distributed Systems (HYMOD_DS)] are evaluated for the Marsyangdi and Budhigandaki River basins in Nepal. Temperature sensitivity of streamflow simulations is also investigated. Relative to APHRODITE, which compared well with ground stations, ERA5-Land overestimates the catchment average precipitation for both basins by more than 70%; IMERG and CHIRPS overestimate by ∼20%. Precipitation uncertainty propagation to streamflow exhibits strong dependencies to model structure and streamflow components (snowmelt, ice melt, and rainfall-runoff), but overall uncertainty dampens through precipitation-to-streamflow transformation. Temperature exerts a significant additional source of uncertainty in hydrologic simulations of such environments. GDM was found to be more sensitive to temperature variations, with >50% increase in total flow for 20% increase in actual temperature, emphasizing that models that rely on lapse rates for the spatial distribution of temperature have much higher sensitivity. Results from this study provide critical insight into the challenges of utilizing satellite and reanalysis products for simulating streamflow in glacierized catchments. Significance Statement This work investigates the uncertainty of streamflow simulations due to climate forcing and model parameter/structure uncertainty and quantifies the relative importance of each source of uncertainty and its impact on simulating different streamflow components in glacierized catchments of High Mountain Asia. Results highlight that in high mountain regions, temperature uncertainty exerts a major control on hydrologic simulations and models that do not adequately represent the spatial variability of temperature are more sensitive to bias in the forcing data. These findings provide guidance on important aspects to be considered when modeling glacio-hydrological response of catchments in such areas and are thus expected to impact both research and operation practice related to hydrologic modeling of glacierized catchments.
Read full abstract