ObjectiveThe enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) can regulate osteogenesis and osteoclastogenesis. This study aimed to further explore the effects of EZH2 modification on ferroptosis and the osteoblast–osteoclast balance in rheumatoid arthritis (RA) in vitro and in vivo. MethodsBone marrow mesenchymal stromal cells were transfected with EZH2 overexpression (oeEZH2) and EZH2 shRNA (shEZH2) plasmids with or without ferrostatin-1 (Fer-1) treatment and subjected to an osteoblast differentiation assay. The cells were then cocultured with bone marrow-derived macrophages and subjected to an osteoclast differentiation assay. Collagen-induced arthritis (CIA) mice were generated and injected with shEZH2 adeno-associated virus (AAV). ResultsOeEZH2 repressed osteoblast differentiation, as reflected by decreased ALP and Alizarin Red S staining and increased OPN, RUNX2, OPG and RANKL; however, shEZH2 had the opposite effects. Besides, oeEZH2 promoted osteoblast ferroptosis, as suggested by increased MDA, Fe2+, ROS, and PTGS2 but decreased GPX4 and SLC7A11; these effects could be attenuated by Fer-1 treatment. In contrast, shEZH2 ameliorated osteoblast ferroptosis. OeEZH2 subsequently increased osteoclast differentiation, as indicated by increased TRAP+ multinucleated cells, NFATC1, CTSK, and c-FOS; however, shEZH2 had the opposite effect, except that it did not regulate CTSK. In CIA mice, shEZH2 AAV decreased the clinical symptom score, histological score of cartilage, and systemic inflammation (TNF-α and IL-6) and repressed bone ferroptosis and restored the osteoblast–osteoclast balance to some extent, as reflected by immunohistochemical staining of related markers. ConclusionTargeting EZH2 attenuates the ferroptosis-mediated osteoblast–osteoclast imbalance in RA, revealing its potential as a treatment target.
Read full abstract