Birnbaum-Saunders distribution has been widely studied in statistical literature because this distribution accommodates several interesting properties. The purpose of this paper is to introduce a new parametric distribution based on the Birnbaum-Saunders model and develop a new acceptance sampling plans for derived extended Birnbaum-Saunders distribution when the mean lifetime test is truncated at a predetermined time. For various acceptance numbers, confidence levels and values of the ratio of the fixed experimental time to the specified mean life, the minimum sample size necessary to assure a specified mean lifetime worked out. The results are illustrated by a numerical example. The operating characteristic functions of the sampling plans and producer’s risk and the ratio of true mean life to a specified mean life that ensures acceptance with a pre-assigned probability are tabulated. This paper presents relevant characteristics of the new distribution and a new acceptance sampling plans when the lifetime of a product adopts an extended Birnbaum-Saunders distribution. Based on this study, the optimal number of testers demanded is decreases as test termination time increases. Moreover, the operating characteristic values increases as the mean life ratio increases, which indicate that items with increased mean life will be accepted with higher probability compared with items with lower mean life ratio.