Reducing greenhouse gas (GHG) emissions and ammonia (NH3) volatilization by improving fertilization methods to increase crop yield is beneficial for the green and sustainable development of agriculture. This study evaluated the effects of farmer practice fertilization (FP), nutrient expert optimized fertilization (NE—optimized fertilizer usage and time), the application of stable compound fertilizer (SF), and the application of controlled-release coated urea (CRU) on greenhouse gases, NH3 volatilization, and corn yield through field experiments set up in the corn planting area in western Liaoning Province. The results showed that compared with FP treatment, NE could significantly reduce NH3 volatilization by 28% and increase N2O release by 41%. Compared with FP treatment, SF could significantly reduce NH3 volatilization by 48.54%, N2O release by 38.54%, CO2 release by 13.96%, global warming potential (GWP) by 16.60%, and greenhouse gas emission intensity (GHGI) by 27.23%, and could significantly increase corn yield by 15.86%. Compared with FP treatment, CRU could significantly reduce NH3 volatilization by 63.46%, CO2 release by 11.98%, GWP by 10.73%, and GHGI by 13.77%, while increasing N2O release by 6.71%. Overall, NE, SF, and CRU treatments all showed better effects than FP treatment in increasing corn yield or reducing NH3 volatilization and GHG emissions. Among them, SF treatment demonstrated superior performance over NE and CRU treatments in terms of NH3 volatilization, corn yield, and GHGI. Therefore, the application of stable compound fertilizer is the optimal choice for corn planting in western Liaoning, with broad application prospects.
Read full abstract