IntroductionThe studies about effect of fetal anemia on placental and maternal molecular changes have rarely been published. This study aimed to compare oxidative stress levels and mitochondrial function in the placenta and maternal peripheral blood mononuclear cell (PMBCs) between anemic fetuses (using fetal Hb Bart's disease as a study model) and non-anemic fetuses. MethodsA cross-sectional study was conducted on pregnancies affected by Hb Bart's disease and non-anemic fetuses between 16 and 22 weeks of gestation. Placental tissue and maternal blood for PBMCs were collected after pregnancy termination for determination of oxidative stress and mitochondrial function. ResultsA total of 18 pregnancies affected by Hb Bart's disease and 12 non-anemic fetuses were enrolled. Placental thickness was significantly greater (p-value <0.001) in the affected pregnancies, whereas all Doppler indices of uteroplacental blood flow were comparable. Mitochondrial dysfunction was significantly increased (p-value <0.001) in the placenta of the affected fetuses. In the mothers of affected fetuses, there was an increase in mitochondrial oxidative stress levels with a significant increase in mitochondrial dysfunction in isolated PBMCs (p-value <0.001). DiscussionIn the presence of normal uteroplacental Doppler studies, fetal anemia can induce a significant increase in oxidative stress and mitochondrial dysfunction in the placentas and mothers. The findings support that the placenta can be a source of oxidative stress agents which are released into systemic circulation prior to development of maternal adverse outcomes, and may explain pathophysiology of subsequent preeclampsia in late gestation, as commonly seen in pregnancies affected by fetal Hb Bart's disease, if pregnancy is not terminated.
Read full abstract