Microwave-assisted rock fracturing is recognized for its efficiency, energy savings, and environmental benefits. Investigating microscopic mechanisms of microwave-induced rock fracturing is essential for predicting the weakening effect on rock. A coupled Electromagnetic–Thermal–Mechanical model based on FEM–DEM was established to describe the response of rock under microwave irradiation. This model employs interpolation algorithms and mineral lattices randomization algorithms to establish a 2D cross-sectional representation of rock. A discrete element calculation method is proposed to synchronize computational time with the experimental time. The model can simulate the multi-physical field response of different rocks under various conditions, making it an effective tool for studying microwave-induced rock fracturing. The effectiveness of the numerical model was validated through open-end microwave-induced fracturing experiments on basalt. Additionally, the study elucidates the micro-fracture mechanism of basalt under microwave irradiation. The results indicate that the direction of crack propagation is influenced by microwave power and boundary effects. The patterns of fracture development between minerals are summarized as follows: Initial fractures primarily result from the rapid heating of microwave-absorbing minerals like enstatite,creating a significant temperature gradient. With increased heating time, heat transfers to highly expansive minerals such as olivine, causing fractures due to localized thermal expansion.
Read full abstract