In order to comprehensively understand the complex fracture mechanisms in thick and loose sandstone formations, we have carefully developed a coupled finite element numerical model that captures the complex interactions between fluid flow and solid deformation. This model is the cornerstone of our future exploration. Based on this model, the crack propagation problem of hydraulic fracturing under different engineering and geological conditions was studied. In addition, we conducted in-depth research on the key factors that shape the geometry of hydraulic fractures, revealing their subtle differences and complexities. It is worth noting that the sharp contrast between the stress profile and mechanical properties between the production layer and the boundary layer often leads to fascinating phenomena, such as the vertical merging of hydraulic fracture propagation. The convergence of cracks originating from adjacent layers is a recurring theme in these strata. Sensitivity analysis clarified our understanding, revealing that increased elastic modulus promotes longer crack propagation paths. As the elastic modulus increases from 12 GPa to 18 GPa, overall, the maximum crack width slightly decreases, with a less than 10% reduction rate. The increased fluid leakage rate will significantly shorten the length and width of hydraulic fractures (with a maximum decrease of over 70% in fracture width). The increase in viscosity of fracturing fluid causes a change in fracture morphology, with a reduction in length of about 32% and an increase in fracture width of about 25%. It is worth noting that as the leakage rate of fracturing fluid increases, the importance of the viscosity of fracturing fluid decreases relatively. Strategies such as increasing fluid viscosity or adding anti-filtration agents can alleviate these challenges and improve the efficiency of fracturing fluids. In summary, our research findings provide valuable insights that can provide information and optimization for hydraulic fracturing filling and fracturing strategies in loose sandstone formations, promoting more efficient and influential oil and gas extraction work.
Read full abstract