AbstractAnthropogenic fragmentation of habitat is considered to be a critical factor contributing to the decline of species. However, a general consensus on the degree to which habitat loss and what has been called "habitat fragmentation per se" contribute to the loss of species diversity has not yet emerged. For empirical and theoretical reasons the topic has recently attracted renewed attention, thus reviving the "single large or several small" (SLOSS) debate. To study the effect of fragmentation per se, we use a spatially explicit and continuous, competitively neutral simulation model with immigration from a regional pool. The model accounts for the influence of ecological drift and intrafragment species clustering (due to limited dispersal) on local (plot) and global (landscape) diversity. We find that fragmentation increases global diversity but decreases local diversity, prominently so if fragments become more isolated. Cluster formation is a key mechanism reducing local diversity. By adding external disturbance events that lead to the occasional extinction of entire communities in habitat fragments, we show that the combined effect of such extinctions and cluster formation can create nonlinear interactive effects of fragmentation and fragment isolation on diversity patterns. We conclude that while in most cases fragmentation will decrease local and increase landscape diversity, universal predictions concerning the SLOSS debate should be taken with care.
Read full abstract