Increasing applications of silver nanoparticles (AgNPs) in multiple products like cosmetics, medicines, drugs, paints, and other new materials have raised concern for their toxic effects on living beings and the surrounding environment. In the present study, cytotoxicity and genotoxicity of AgNPs synthesized using plant flavonoid (Naringin) as a reducing agent were investigated on human promyelocytic leukemic (HL-60) cells and human blood as an in vitro model. The LC50 of AgNPs was found to be 4.85µM. Dose-dependent increase in cell death and caspase activity was observed in the presence of AgNPs. The comet assay showed a 60%-70% (p < .05) increase in tail DNA at 0.48 and 0.96µM AgNPs. CBMN in PBMCs also confirmed the genotoxic potential of AgNPs-induced DNA damage. AgNPs resulted in 1.5-1.54 fold (p < .05) increase in the level of ROS in HL-60 cells after 12h of exposure. AgNP showed toxicity in human cells through ROS generation and cellular damage through membrane dysfunction, caspase activation, apoptosis, and DNA damage.
Read full abstract