BaFe12O19 (barium ferrite, i.e., BaF) nanoparticles, Co0.5Zn0.5Fe2O4 (cobalt zinc ferrite, i.e, CZF) nanoparticles and their nanocomposite were synthesized for the investigation of electrical, magnetic, dielectric, and electrochemical properties. The X-ray diffraction (XRD) pattern revealed the formation of hexagonal structure for BaF nanoparticles and cubic structure for CZF nanoparticles with crystallite size of 32.44 nm and 31.30 nm, respectively. Whereas, for nanocomposite, the crystallite size obtained is 34.21 nm were shifting of peaks revealed the formation of nanocomposite. The Fourier transform Infrared (FTIR) spectra revealed the presence of metal-oxygen vibrational peaks for all the samples. The dielectric data revealed the increase in dielectric constant of nanocomposite as compared to pristine CZF whereas, loss reduced for nanocomposite significantly. Single semicircle in Nyquist plot for all the samples revealed the contribution of grain resistance in impedance. The hysteresis loop showed the increase in specific saturation magnetization from 16.963 emu/g to 21.305 emu/g for nanocomposite when compared with pristine BaF. Whereas specific remnant magnetization increased to 10.305 emu/g for nanocomposites. The electrochemical properties presented by Cyclic voltammetry showed the presence of cathodic and anodic peaks which revealed the presence of redox reaction in all samples. The specific capacitance calculated for all samples at different scan rate revealed that a nanocomposite showed highest Cs value 16.43 F/g at 25 mV, whereas it increased to 27.01 F/g, 35.93 F/g and 38.87 F/g with the increase in scan rate to 50 mV, 75 mV and 100 mV, respectively.
Read full abstract