Hidden fissures widely exist in the surrounding rock of tunnels, and the propagations and interactions of the fissures will directly affect the safety and stability of tunnels. However, experimental and numerical simulation studies are scarce on the tunnel-fissure interactions under complex stress conditions. Based on this background, circular tunnel specimens with different prefabricated fissure locations are prepared by three-dimensional (3D) printing technology. Uniaxial compression fracture tests are conducted utilizing Digital Image Correlation (DIC) technology to obtain strain distributions. An improved Smoothed Particle Hydrodynamics (SPH) method is employed to simulate the crack propagation processes of the tunnel-fissure interactions. The results demonstrate the following: 1) Upper main cracks, upper side cracks, and lower side cracks are produced around the tunnel, and wing cracks initiate from the prefabricated fissure tips. 2) For the different intersection positions, wing crack propagation length decreases as the intersection position moves upward, while the lower side crack propagation length increases. 3) For different distances d, upper side crack does not appear, and the propagation length of upper main crack increases with the increase of the distance d. 4) For different fissure inclination angles α, upper main crack does not appear when α = 15°. The propagation length of wing crack increases with the increase of inclination angle α. 5) The peak stress increases as the intersection position moves upward, while it decreases with the increase of inclination angle α. With increasing distance d, the peak stress initially increases and then decreases. Finally, the crack initiation mechanisms under different fissure orientations and inclinations are discussed. These research findings provide valuable insights into the tunnel-fissure interaction mechanisms under complex stress conditions and the applications of the SPH method in underground engineering simulations.
Read full abstract