Cancer-induced pain is the most common complication of the head and neck cancer. The microglia colony-stimulating factor receptor 1 (CSF1R) plays a crucial role in the inflammation and neuropathic pain. However, the effect of CSF1R on orofacial cancer-induced pain is unclear. Here, we aimed to determine the role of CSF1R in orofacial pain caused by cancer. We established an animal model of cancer-induced orofacial pain with Walker 256B cells. Von Frey filament test and laser-intensity pain tester were used to evaluate tumor-induced mechanical and thermal hypersensitivity. Minocycline and PLX3397 were used to alter tumor-induced mechanical and thermal hyperalgesia. Additionally, we evaluated the effect of PLX3397 on immunoinflammatory mediators and neuronal activation within the trigeminal spinal subnucleus caudalis (Vc). Walker 256B cell-induced tumor growth resulted in mechanical and thermal hyperalgesia, accompanying by microglia activation and CSF1R upregulation. Treatment with minocycline or PLX3397 reversed the associated nocifensive behaviors and microglia activation triggered by tumor. As a result of PLX3397 treatment, tumor-induced increases in pro-inflammatory cytokine expression and neuronal activation of the Vc were significantly inhibited. The results of our study showed that blocking microglial activation via CSF1R may help prevent cancer-induced orofacial pain.
Read full abstract