Innate immune neutrophils provide the first line of host defense against bacterial infections. Neutrophils under steady state rely almost entirely on glycolysis and exhibit very low levels of oxidative phosphorylation. The metabolite lactate has long been considered a "waste byproduct" of cell metabolism which accumulates during inflammation and sepsis. Increased plasma lactate levels in human patients is used as a marker for sepsis diagnosis. However, the direct effector actions of lactate, particularly in regulating neutrophil mobilization and function during inflammation has remained obscure. To better understand the metabolic consequences of BM neutrophil activation during the onset of inflammation, we tested how bacterial lipopolysaccharides (mimicking gram negative bacterial inflammation) introduced intraperitoneally (i.p.) affect neutrophil metabolism and mobilization. RNAseq of sorted BM neutrophils revealed that LPS-activated neutrophils upregulate enzymes catalyzing the first part of glycolysis (hexokinase and PFKL) and downregulate the expression of TCA cycle enzymatic genes. In addition, LPS enhanced neutrophil lactate production and release as indicated by higher levels of BM lactate and higher expression of LDHA and MCT4. In addition, LPS increased NADPH oxidase (NOX)-mediated reactive oxygen species and HIF-1α levels in BM neutrophils, which are up-stream of glycolytic enzymes and lactate production and release. Recently, we reported that i.p. lactate administration rapidly activated and mobilized neutrophils from BM to the circulation (ASH, 2017). To test if lactate acts preferentially on neutrophils, we also examined other types of hematopoietic cells. Interestingly, we found that lactate specifically and rapidly (i.e., within 4 hrs) mobilized neutrophils to the circulation whereas the levels of peripheral blood (PB) monocytes, lymphocytes, granulocyte monocyte progenitors (GMPs) and hematopoietic progenitor stem cells (LSK) were reduced following lactate administration. LPS treatment failed to mobilize activated ROShigh neutrophils to the PB in NOX-/- mice, while lactate administration partially rescued this defect following LPS treatment. Our data also reveal that the NOX/ROS axis operates upstream of lactate production in BM neutrophils since abnormal metabolic rates were found in NOX-/- neutrophils during the onset of the acute inflammatory responses. Moreover, we found that BM endothelial cells (BMEC) abundantly express the highly selective lactate receptor GPR81, and that neutrophil-released lactate increased BM vascular permeability via BMEC GPR81 signaling (ASH, 2017). Consistent with a role of the lactate/GPR81 axis in enhanced vascular permeability, we find that i.p. injected LPS reduced VE-Cadherin expression on highly permeable sBMECs in GPR81 dependent manner. Notably, neutralizing VE-Cadherin in GPR81-/- mice can rescue and elevate PB neutrophil levels, similarly to wild-type (WT) mice, suggesting that VE-Cadherin is downstream of GPR81 signaling and plays a role in neutrophil mobilization. Finally, to examine the potential clinical relevance of our findings, we infected WT, NOX-/- and GPR81-/- mice with Salmonella Typhimurium and found out that this pathogen drove high generation of ROS, elevated HIF-1αlevels, and triggered lactate production and release in WT BM neutrophils. In contrast, BM neutrophils of infected NOX-/- mice exhibited significantly lower HIF-1αand impaired lactate production and release. Consequently, WT mice infected with Salmonella had a higher levels of neutrophils in the blood, as compared to their NOX-/- or GPR81-/- mice counterparts. Altogether, our data reveal that the same regulatory mechanisms by which neutrophils respond to LPS challenges are used during bacterial infection with Salmonella. Our study highlights lactate released by BM neutrophils as a key pro-inflammatory stimulus of a novel immune-metabolic crosstalk which is triggered by infection and locally opens the BM vascular barrier to facilitate neutrophil mobilization and recruitment to sites of inflammation. Targeting this immune-metabolic crosstalk between lactate-producing neutrophils and the BM endothelium could be useful for the control of pathological neutrophil activation and mobilization during bacterial infections and help treatments of neutrophil related immune disorders. Disclosures No relevant conflicts of interest to declare.
Read full abstract