Peptide mapping requires cleavage of proteins in a predictable fashion so that target protein-specific peptides can be reliably identified and quantified. Trypsin, a commonly used protease in this process, can also undergo self-cleavage or autolysis, thereby reducing the effectivity and even cleavage specificity at lysine and arginine residues. Here, we report highly efficient and reproducible peptide mapping of biotherapeutic monoclonal antibodies. We highlight the properties of a homogeneous chemically modified trypsin on thermal stability, a 54% increase in melting temperature with an 84% increase in energy required for unfolding, an indication of more thermally stable trypsin, >90% retained intact mass peak area after exposure to digestion conditions confirming autolysis resistance, 10× more intensity for intact enzyme compared to trypsin of similar source and narrower molecular weight distribution with LC-MS indicative of low degradation compared to 3 other types of trypsin. Finally, we show the utility of this autolysis-resistant trypsin in characterizing biotherapeutic monoclonal antibodies consistently and reliably showing a >30% reduction in missed cleavage for a short-duration protein digestion time of 30 min compared to heterogeneously modified trypsin of a similar source.
Read full abstract