The emergence of drug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), has brought great difficulties to clinical treatment. Antibacterial photodynamic therapy (aPDT) is a new non-antibiotic treatment strategy for a variety of drug-resistant bacteria. However, there are few studies on the antimicrobial mechanism of a PDT mediated by 5-aminolevulinic acid (ALA-PDT) for MRSA. In this study, we observed the bactericidal effect of ALA-PDT on MRSA. We found that ALA-PDT had the strongest bactericidal effect when ALA was at 0.05 mM, and the bactericidal activity of aPDT increased with the increase of light dose. MRSA was almost completely eliminated at 0.05 mM and 384 Jcm-2. In addition, the bactericidal morphology was also observed under a fluorescence microscope using a LIVE/DEAD® BacLight™ Bacterial Viability Kit and an electron microscope. It was also found that proteins and DNA were damaged by ALA-PDT. Finally, the transcription level of the specific gene of MRSA, nuc, was decreased by 0.74-fold (P < 0.05) after ALA-PDT treatment by qRT-PCR analysis. The findings suggest that ALA-PDT can effectively inhibit MRSA by damaging cell membrane, cytoplasm, proteins and nucleic acid.
Read full abstract