AimsThe preservation of pancreatic beta-cell function is crucial for the treatment of type 2 diabetes. Inhibition of class I histone deacetylase (HDAC) has been proved to protect beta-cells from palmitate- or cytokine-induced apoptosis and increase insulin secretion. However, the underlying molecular mechanism is unclear. Main methodsRat islets were isolated for insulin secretion, real-time PCR, RNA- sequencing, ChIP-PCR, and oxygen consumption rate analysis after treated with the HDAC1 and HDAC3 inhibitor MS-275. Key findingsMS-275 pretreatment significantly potentiated insulin secretion from rat islets. RNA-sequencing revealed that multiple signaling pathways were involved in MS-275-regulated islet function. Cacna1g and Adcy1 in calcium and cAMP signaling pathways were up-regulated in MS-275-treated islets, which was validated by real-time PCR. The expressions of the two genes displayed a similar increase in islets isolated from mice treated with MS-275. Knockdown of HDAC1 elevated Cacna1g and Adcy1 expressions in islets. ChIP-sequencing analysis showed that the pan-HDAC inhibitor sodium butyrate increased H3K27 acetylation level in the upstream region of Adcy1 and the promoter region of Cacna1g. ChIP-PCR revealed a similar result in MS-275-treated rat islets. However, MS-275 had minor effect on glucose-induced oxygen consumption rate in rat islets. Unlike glucose, MS-275 did not alter the expressions of glucose-sensitive genes such as Glut2 and Gck, but elevated intracellular Ca2+ concentration in beta-cells. SignificanceOur findings support the notion that MS-275-potentiated insulin secretion is involved in calcium and cAMP signaling-mediated gene expressions independent of glucose oxidation. Therefore, HDAC inhibition may serve as a therapeutic strategy for type 2 diabetes.