AimsThe accumulated evidence suggests that lifestyle - specifically dietary habits and stress exposure - plays a detrimental role in health. The purpose of the present study was to analyze the interplay of stress, diet, and sex in metabolic and cognitive alterations. Main methodsFor this purpose, one-month-old C57Bl/6J mice were fed with a standard diet or high-fat diet (HFD). After eight weeks, one subgroup of mice from each respective diet was exposed to 20 weeks of chronic mild stress (CMS), whilst the others were left undisturbed. Key findingsAfter 28 weeks of HFD feeding, mice from both sexes were overweight, with an increase in caloric intake and abdominal and subcutaneous fat pads. Stress exposure induced a decrease in body weight, related to a decrease in caloric efficiency in both males and females. Results indicate that males are more susceptible than the females in modulating metabolic and cognitive functions under HFD and CMS. Although both sexes demonstrated HFD-induced weight gain, fat accumulation, insulin resistance, high cholesterol, only males exposed to CMS but not females have (i) impaired glucose tolerance with higher glucose level; (ii) significant prolonged latency in Barnes test, suggesting cognitive impairment; (iii) increased IFN-gamma expression in hippocampus, suggesting greater neuroinflammatory response; (iv) poorer cognitive performance related to a decrease in hippocampal and spleen BDNF mRNA expression. SignificanceThe main finding in this study is the presence of a sexual dimorphism in modulating metabolic and cognitive functions under HFD and CMS, showing males are more susceptible than females. In addition, poorer cognitive performance was related to a decrease in hippocampal BDNF mRNA expression. Interestingly, these changes were observed in the spleen as well.