Age-related macular degeneration (AMD) is a common disease contributing to vision loss in the elderly. All-trans-retinal (atRAL) is a retinoid in the retina, and its abnormal accumulation exhibits toxicity to the retina and promotes oxidative stress-induced photoreceptor degeneration, which plays a crucial role in AMD progression. Crocin is a natural product extracted from saffron, which displays significant antioxidant and anti-inflammatory effects. The present study elucidates the protective effects of crocin on photoreceptor cell damage by atRAL and its potential mechanisms. The results revealed that crocin significantly attenuated cytotoxicity by repressing oxidative stress, mitochondrial injury, and DNA damage in atRAL-loaded photoreceptor cells. Moreover, crocin visibly inhibited DNA damage-induced apoptosis and gasdermin E (GSDME)-mediated pyroptosis in photoreceptor cells after exposure to atRAL. It was also observed that crocin distinctly prevented an increase in Fe2+ levels and lipid peroxidation caused by atRAL via suppressing the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor-erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway, thereby ameliorating photoreceptor cell ferroptosis. In short, these findings provide new insights that crocin mitigates atRAL-induced toxicity to photoreceptor cells by inhibiting oxidative stress, apoptosis, pyroptosis, and ferroptosis.
Read full abstract