The numbers of sulphydryl groups on NH 4Cl-washed rat liver polyribosomes in different functional states were measured under carefully standardized conditions with 14C-labelled N-ethylmaleimide and 35S-labelled 5,5-dithio-bis(2-nitrobenzoic acid). Ribosomes denatured with urea had 120 titratable sulphydryl groups, 60 on each subunit, whereas native ribosomes invariably showed fewer available sulphydryl groups. Ribosomes stripped of transfer RNA (S-type ribosomes) had 55 available sulphydryl groups. Ribosomes bearing the growing peptidyl-tRNA at the acceptor site had 41 sulphydryl groups available. If these A-type ribosomes were labelled with 14C-labelled N-ethylmaleimide and dissociated into subunits, 23 of the labelled sulphydryl groups were found on the 60 S subunit and 19 on the 40 S subunit. After translocation of the peptidyl-tRNA to the donor position on ribosomes (D ribosomes), the number of available sulphydryl groups increased to 72, of which 43 were on the 60 S subunit and 29 on the 40 S subunit. This demonstrates that both subunits participate in the change of peptidyl-tRNA from the A to D positions. When the D ribosomes were reacted with EF2 (elongation factor) and GTP, the available sulphydryl groups increased to 82; addition of EF2 alone or with GDP, GDPCP or ATP failed to cause this increase, which has accordingly been attributed to an energy-dependent conformational change in the ribosome. Ribosomes were reconstructed from subunits with poly(U) and Phe-tRNA. In the presence of poly(U) only, a ribosome with 55 available SH groups was formed, thus corresponding to the stripped ribosomes. When both poly(U) and Phe-tRNA were present, a ribosome was formed with 44 available sulphydryl groups, corresponding approximately to an A-type ribosome. Since no EF1 or GTP was used in reconstructing this ribosome, these data indicate that the conformation of A-type ribosomes is not dependent on EF1 or GTP, but is due to the presence of tRNA at the acceptor site. We therefore incline to the view that the observed changes in available SH groups reflect conformational changes, with an opening up of ribosome structure as it progresses from having the peptidyl-tRNA at the A position to the D position and then binds EF2 and GTP, followed by a restoration of the more compact from when the incoming aminoacyl-tRNA is then bound.
Read full abstract