This article illustrates the hydroelastic interactions between surface gravity waves and a floating elastic plate in a two-layer liquid with variable bottom topography under the assumptions of small amplitude waves and potential flow theory. In this study, semi-infinite and finite-length plates are considered. The eigenfunction expansion method is applied in the fluid region with uniform bottom topography. A system of differential equations (mild-slope equations) is solved in the fluid region with variable bottom topography. From the matching and jump conditions, the solution is expressed as a linear algebraic system from which all the unknown constants are computed. We explored the effects of density ratio, depth ratio, and bottom topography on the bending moment, shear force, and the deflection of the elastic plate. Results show that when the density ratio becomes closer to one, the occurred bending moment and shear forces to the elastic plates tend to diminish. The bending moment and shear forces to the pates are higher and lower at a smaller depth ratiofor the incident surface wave and interfacial waves, respectively. The variations in the bending moment, shear force, and plate deflection, caused by surface and interfacial waves, are observed to be in opposite trends, respectively. Bottom profiles similarly affect semi-infinite and finite-length plates when they undergo free-edge conditions. These effects, however, are substantial when the plate is simply supported at the edges. Elastic plate with free edges experiences lower deflection for concave-up and plane-sloping bottoms for incident surface and interfacial waves, respectively.
Read full abstract