ObjectiveSurgery is a good treatment option for drug-resistant temporal lobe epilepsy (TLE). 2-deoxy-2-(18F) fluoro-D-glucose (FDG) positron emission tomography (PET) is used to detect epileptic foci as hypometabolic lesions in presurgical evaluation. Visual field defects (VFDs) in the contralateral homonymous upper quadrant are common postoperative complications in TLE. This study aimed to quantify VFDs using pattern deviation probability plots (PDPPs) and examine the effect of hypometabolism in FDG-PET on VFDs. MethodsThis study included 40 patients. Both visual fields were assessed using the Humphrey field analyzer (HFA) preoperatively and 3 months and 2 years postoperatively. PDPPs with <0.5% confidence level counted in the contralateral homonymous upper quadrant. FDG-PET results were compared between groups with (15 patients) and without (24 patients) hypometabolism in the optic radiation. ResultsAll 40 patients were evaluated by HFA at 3 months postoperatively and 39 at 2 years postoperatively. The incidence of VFDs 3 months postoperatively was 35/40 (87.5%), and 17/40 (42.5%) patients had severe VFDs. In cases of surgery on the left temporal lobe, ipsilateral eyes appeared to be more significantly affected than contralateral eyes. VFDs were more severe in patients with FDG hypometabolism than in those without hypometabolism in posteromedial temporal and medial occipital cortex (P < 0.01); however, 85% of patients with FDG hypometabolism had a reduced VFD 2 years postoperatively. ConclusionPDPP counting is useful for quantifying VFDs. Preoperative dysfunction indicated by preoperative FDG-PET in the posteromedial temporal and medial occipital cortex could enhance VFDs early after TLE surgery.