The COLIA1 Sp1 polymorphism has been associated with bone mineral density (BMD) and fracture. A promoter polymorphism, -1997 G/T, also has been associated with BMD. In this study, we examined whether these polymorphisms alone and in the form of haplotypes influence bone parameters and fracture risk in a large population-based cohort of elderly Caucasians. We determined the COLIA1 -1997 G/T (promoter) and Sp1 G/T (intron) polymorphisms in 6,280 individuals and inferred haplotypes. Femoral neck BMD and BMD change were compared across COLIA1 genotypes at baseline and follow-up (mean 6.5 years). We also investigated the relationship between the COLIA1 polymorphisms and incident nonvertebral fractures, which were recorded during a mean follow-up period of 7.4 years. Vertebral fractures were assessed by radiographs on 3,456 genotyped individuals. Femoral neck BMD measured at baseline was 3.8% lower in women carrying two copies of the T-Sp1 allele (P for trend = 0.03). No genotype dependent differences in BMD loss were observed. In women homozygous for the T allele of the Sp1 polymorphism, the risk of fragility fracture increased 2.3 times (95% confidence interval 1.4–3.9, P = 0.001). No such association was observed with the promoter polymorphism. In men, no association with either the Sp1 or the -1997 G/T promoter polymorphism was seen with BMD or fracture. High linkage disequilibrium (LD; D′ = 0.99, r2 = 0.03) exists between the two studied polymorphisms. We observed three haplotypes in our population: haplotype 1 (Gpromoter–Gintron) frequency (f) = 69%, haplotype 2 (Gpromoter–Tintron) f = 17.6%, and haplotype 3 (Tpromoter–Gintron) f = 13.4%. Haplotype 2 was associated with a 2.1-fold increased risk of fragility fracture in women (95% confidence interval 1.2–3.7, P = 0.001). We confirm that the COLIA1 Sp1 polymorphism influences BMD and the risk of fracture in postmenopausal Caucasian women. In contrast, we found no independent effect of the -1997 G/T promoter polymorphism on BMD or fracture.
Read full abstract