BackgroundMulti-drug-resistant organisms (MDROs) in gram-negative bacteria have caused a global epidemic, especially the bacterial resistance to carbapenem agents. Plasmid is the common vehicle for carrying antimicrobial resistance genes (ARGs), and the transmission of plasmids is also one of the important reasons for the emergence of MDROs. Different incompatibility group plasmid replicons are highly correlated with the acquisition, dissemination, and evolution of resistance genes. Based on this, the study aims to identify relevant characteristics of various plasmids and provide a theoretical foundation for clinical anti-infection treatment.Methods330 gram-negative strains with different antimicrobial phenotypes from a tertiary hospital in Henan Province were included in this study to clarify the difference in incompatibility group plasmid replicons. Additionally, we combined the information from the PLSDB database to elaborate on the potential association between different plasmid replicons and ARGs. The VITEK mass spectrometer was used for species identification, and the VITEK-compact 2 automatic microbial system was used for the antimicrobial susceptibility test (AST). PCR-based replicon typing (PBRT) detected the plasmid profiles, and thirty-three different plasmid replicons were determined. All the carbapenem-resistant organisms (CROs) were tested for the carbapenemase genes.Results21 plasmid replicon types were detected in this experiment, with the highest prevalence of IncFII, IncFIB, IncR, and IncFIA. Notably, the detection rate of IncX3 plasmids in CROs is higher, which is different in strains with other antimicrobial phenotypes. The number of plasmid replicons they carried increased with the strain resistance increase. Enterobacterales took a higher number of plasmid replicons than other gram-negative bacteria. The same strain tends to have more than one plasmid replicon type. IncF-type plasmids tend to be associated with MDROs. Combined with PLSDB database analysis, IncFII and IncX3 are critical platforms for taking blaKPC−2 and blaNDM.ConclusionsMDROs tend to carry more complex plasmid replicons compared with non-MDROs. The plasmid replicons that are predominantly prevalent and associated with ARGs differ in various species. The wide distribution of IncF-type plasmids and their close association with MDROs should deserve our attention. Further investigation into the critical role of plasmids in the carriage, evolution, and transmission of ARGs is needed.
Read full abstract