Italian local turkey populations are an important source of genetic diversity that should be preserved through an in vivo approach. Whole genome sequencing (WGS) and genotyping datasets were used to assess genetic variability within and across populations, to perform a genome-wide comparative analysis among populations and to identify selection signatures in Italian turkey populations. We used new data from 73 WGS samples (12X) representing five turkey populations, together with previous data from 107 birds genotyped with the Affymetrix 600K single nucleotide polymorphism (SNP) turkey array from 11 populations. The PCA and Admixture show a relatively strong isolation effect between the populations. Moreover, the values of genomic inbreeding based on ROH (FROH) showed marked differences among populations and ranged from 0.096 to 0.643. Selective sweeps were identified using the integrated haplotype score (iHS) within the local group, the commercial line, and the Narragansett breed, resulting in the identification of 20, 19, and 27 regions with a total of 73, 48, and 90 candidate genes, respectively. Some of these genes such as FAM107B, MSTN, PDZRN4, HSF2 and GJA1 are associated with heat stress, growth, and carcass traits. We conclude that our results improve our understanding of the genomic architecture of the Italian turkey populations. The findings of iHS suggest that selection can play a significant role in shaping selection signatures in local turkey populations and could provide a basis for identifying gene mutations that may be beneficial in adaptation to climate change. Our results will be useful in developing and implementing conservation and selection plans for Italian turkey populations.
Read full abstract