Cervical cancer poses a significant global health challenge, particularly impacting women in economically developing nations. This disparity stems from a combination of factors, including inadequate screening infrastructure and resource limitations. However, the foremost contributor is the widespread lack of awareness and limited accessibility to Human Papillomavirus (HPV) vaccination, which is a key preventative measure against cervical cancer development. Despite advancements in cervical cancer prevention, treatment resistance remains a major hurdle in achieving improved patient outcomes. Cellular senescence, specifically the senescence-associated secretory phenotype (SASP) and its bidirectional relationship with the immune system, has been implicated in resistance to conventional cervical cancer chemotherapy treatments. The exact mechanisms by which this state of growth arrest and the associated changes in immune regulation contribute to cervical cancer progression and the associated drug resistance are not entirely understood. This underscores the necessity for innovative strategies to address the prevalence of treatment-resistant cervical cancer, with one promising avenue being the utilisation of senolytics. Senolytics are agents that have promising efficacy in clearing senescent cells from tumour tissues, however neither the utilisation of senolytics for addressing senescence-induced treatment resistance nor the potential integration of immunotherapy as senolytic agents in cervical cancer treatment has been explored to date. This review provides a concise overview of the mechanisms underlying senescence induction and the pivotal role of the immune system in this process. Additionally, it explores various senolytic approaches that hold significant potential for advancing cervical cancer research.
Read full abstract