The functional investigation of proteins holds immense significance in unraveling physiological and pathological mechanisms of organisms as well as advancing the development of novel pharmaceuticals in biomedicine. However, the study of cellular protein function using conventional genetic manipulation methods may yield unpredictable outcomes and erroneous conclusions. Therefore, precise modulation of protein activity within cells holds immense significance in the realm of biomedical research. Chromophore-assisted light inactivation (CALI) is a technique that labels photosensitizers onto target proteins and induces the production of reactive oxygen species through light control to achieve precise inactivation of target proteins. Based on the type and characteristics of photosensitizers, different excitation light sources and labeling methods are selected. For instance, KillerRed forms a fusion protein with the target protein through genetic engineering for labeling and inactivates the target protein via light activation. CALI is presently predominantly employed in diverse biomedical domains encompassing investigations into protein functionality and interaction, intercellular signal transduction research, as well as cancer exploration and therapy. With the continuous advancement of CALI technology, it is anticipated to emerge as a formidable instrument in the realm of life sciences, yielding more captivating outcomes for fundamental life sciences and precise disease diagnosis and treatment.