The efficacy of ultra-high-pressure homogenisation (UHPH) in inactivating Bacillus pumilus ATCC 27142 and Bacillus subtilis ATCC 6633 spores suspended in sheep and cow milk was investigated. The UHPH treatment was conducted at 200 and 250 MPa with an inlet temperature of 85 °C, resulting in homogenising valve temperatures of 117 °C and 127 °C, respectively. To isolate the role of temperature and pressure in the inactivation of bacterial spores, the UHPH treatment was repeated at 250 MPa with a lower inlet temperature of 70 °C that resulted in a valve temperature of 117 °C. Increasing the pressure and valve temperature resulted in increased inactivation. At 250 MPa with a valve temperature of 127 °C, greater than 5 log CFU/mL reduction was achieved in B. pumilus and B. subtilis spores in both milk types. Reductions of 0.61 ± 0.03 log CFU/mL and 0.62 ± 0.09 log CFU/mL in B. pumilus spores and 1.18 ± 0.04 log CFU/mL and 1.30 ± 0.07 log CFU/mL in B. subtilis spores were obtained at 250 MPa with a valve temperature of 117 °C in sheep and cow milk, respectively. The spore inactivation was influenced by both the pressure and temperature, suggesting a synergistic effect, with the latter playing a critical role in the lethality of the treatment. No significant differences in the inactivation of either strain was observed between sheep and cow milk.
Read full abstract