A 2D-to-2D (2D: two-dimensional) structural transformation accompanying significant bond rearrangement and coordination environment change is demonstrated in a coordination polymer (CP) comprised of copper(II) ions and terephthalate (BDC2- ) ligands for the first time. When immersed in water, a free-standing membrane of 2D Cu(BDC)(DMF) (Cu-1; DMF: N,N-dimethylformamide) transforms into 2D Cu(BDC)(H2 O)2 (Cu-2) while maintaining its highly oriented layered structure. In the 2D sheet, paddlewheel-type CuII dimers coordinated with four bidentate BDC ligands in a square-planar array in Cu-1 were released to form uniform aqua-bridged CuII chains, which are cross-linked with each other by unidentate BDC ligands, in Cu-2. The present facile approach to implement the 2D-to-2D transformation accompanied by bond rearrangement, which is characteristic of CPs, leads to a marked increase in in-plane magnetic susceptibility and proton conductivity. In situ experiments in support of theoretical calculations unveiled the energy diagram that governs the unique structural transformation.
Read full abstract