Hydroxyl Radical Protein Footprinting (HRPF) is a powerful method to probe the solvent-accessible surface area of proteins. It is mostly used to study the higher-order structure of proteins, as well as protein-protein and protein-carbohydrate interactions. Hydroxyl radicals are generated by the photolysis of hydrogen peroxide and these radicals modify the surface amino acids. Bottom-up proteomics is then applied and peptide oxidation is calculated and correlated with solvent accessibility. It is mainly performed in vitro ; however, it has been recently used in living systems, including live cells, live nematodes, and 3D cell cultures. Mammalian tissues are still out of reach as they absorb UV strongly, hindering radical generation. Here, we describe the first example of RPF in mammalian stabilized whole blood. Using photoactivation of persulfate with a commercially available FOX Photolysis System modified for sample handling and inline mixing, we demonstrate the first labeling of proteins in whole blood. We demonstrate that the RPF protocol does not alter the blood cell gross morphology outside of a moderate hypertonicity equivalent to sodium chloride exposure prior to labeling. We detail an improved quenching protocol to limit background labeling in persulfate RPF. We describe the labeling of the top ten most abundant proteins in the blood. We demonstrate the equivalence of ex vivo labeling in whole blood with labeling of the same structure in vitro using hemoglobin as a test system. Overall, these results now open the possibility of performing RPF-based structural proteomics in pre-clinical models and using readily available clinical samples.