PURPOSEThe IROC head and neck phantom is used to credential institutions for IMRT delivery for all anatomical sites where delivery of modulated therapy is a primary challenge. This study evaluated how appropriate the use of this phantom is for varied clinical anatomy by evaluating how closely the IROC head and neck phantom described clinical dose errors from beam modeling compared to various anatomical sites. METHODSThe MLC offset, transmission, PDD and seven additional beam modeling parameters for a Varian accelerator were modified in RayStation to match community data at the 2.5, 25, 50, 75 and 97.5 percentile levels. Modifications were evaluated on 25 H&N phantom cases and 25 clinical cases (H&N, prostate, lung, mesothelioma, and brain), generating 2,000 plan perturbations. Differences in mean dose delivered to clinical target volumes (CTV) and organs at risk (OAR) were compared between phantom and clinical plans to assess the relationship between dose deviations in phantom versus clinical CTVs, and as a function of 18 different complexity metrics. RESULTSPerturbations to MLC offset and transmission parameters demonstrated the greatest impact on dose accuracy for phantom and clinical plans (for all anatomic sites). The phantom demonstrated equivalent or greater sensitivity to these parameter perturbations when compared to clinical sites, largely aligning with treatment complexity. The mean MLC Gap best described the impact of errors in TPS beam modeling parameters in phantoms plan and clinical plans from various anatomical sites. CONCLUSIONWhen compared across various anatomical sites, the IROC H&N credentialing phantom exhibited similar or greater sensitivity to errors in the treatment planning system. As such, it is a suitable surrogate device for assessing institutional performance across various anatomical sites. If an institution successfully irradiates the phantom, that result confers confidence that IMRT to a wide range of anatomical sites can be successfully delivered by the institution.
Read full abstract