Background: Uric acid (UA), a metabolite of purine and fructose metabolism, is linked to inflammation and metabolic disorders, including gout and cardiovascular disease. Its pro-inflammatory effects are largely driven by the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, leading to increased cytokine production. Beta-hydroxybutyrate (BHB), a ketone produced during fasting or carbohydrate restriction, has been shown to reduce inflammation. This study explores the role of BHB in mitigating the inflammatory and metabolic effects of elevated uric acid levels. Methods: We utilized a murine muscle cell culture treated with UA and BHB. Results: Muscle cells treated with UA had increased production of pro-inflammatory cytokines and reduced cell viability. Co-treatment with BHB reversed these effects, improving cell survival and reducing cytokine levels. Additionally, uric acid impaired mitochondrial function and increased oxidative stress, which were mitigated by BHB. Furthermore, uric acid disrupted insulin signaling, but BHB co-treatment restored insulin sensitivity. Conclusions: These findings suggest that BHB holds therapeutic potential by counteracting the inflammatory and metabolic disruptions caused by elevated uric acid, making it a promising target for conditions such as hyperuricemia and metabolic syndrome.
Read full abstract