The coupling of Organic Rankine Cycle (ORC) and Latent Heat Thermal Energy Storage (LHTES) is a novel strategy for efficiently using solar energy. The objective of this study is to explore the solidification performance of phase change material (PCM) with single-walled carbon nanotubes (SWCNTs) for thermal management in solar energy system. The evolution of temperature and liquid fraction during the solidification process is investigated across four cases: Case 01 without SWCNTs, and Cases 02, 03, and 04 with 2 %, 3 %, and 4 % SWCNTs dispersion, respectively. By analyzing the temperature and liquid fraction contours over time, the impact of SWCNTs concentration on thermal performance is assessed. Case 01 has a total solidification time of 14,400 s. In comparison, Case 02 achieves solidification in 13,600 s, Case 03 in 13,040 s, and Case 04 in 12,500 s, reflecting time savings of 5.55 %, 9.44 %, and 13.2 %, respectively. Additionally, Case 04 exhibits the highest sensible heat release of 527.9 kJ and a total heat energy release of 2851.09 kJ. The dimensionless TES rate P′ for Case 04 is 1.26, indicating a 26 % improvement in thermal energy storage performance over the baseline. These findings underscore the effectiveness of SWCNTs-enhanced PCM in optimizing solar energy systems through enhanced heat transfer and accelerated solidification.
Read full abstract