This paper aims to employ combination of residual soil and Class F fly ash in developing a controlled low-strength material (CLSM), primarily used as backfilling material. In the mixture, surplus soil and concrete sand was blended well together with a given proportion of 6:4 by volume. Three levels of binder content (i.e. 80-, 100-and 130 kg/m3) and different percentages fly ash (i.e., 0%, 15%, 30%, and 45%) substituting to Portland cement were previously chosen for mix design. Several major engineering properties of the CLSM such as fresh density, flowability, setting time, water bleeding, unconfined compressive strength, and elastic modulus were investigated via a laboratory study. Testing results indicate that most of the proposed CLSM mixtures satisfy the requirements of excavatability as the 28-days compressive strength ranges from 0.3 to 1.4 MPa. In addition, increase in FA substituting to OPC resulted in workability improvement, setting time extension as well as compressive strength and elastic modulus reduction.